Yue Li

yuel5@andrew.cmu.edu

FDUCATION	Ph D in Statistics, Carnegie Mellon University	2017 (avo) 2022
EDUCATION	Advisors: Yuting Wei, Kathryn Roeder	2017–(exp.) 2022
	M.S. in Machine Learning, Carnegie Mellon University	2017–(exp.) 2020
	B.S. in Statistics and Probability, Peking University	2013-2017
	B.A. in Economics (minor), Peking University	2014–2017
Skills	Languages Chinese (native), English (working proficiency)	
	Programming R, Python (PyTorch, TensorFlow, Jupyter Notebook), LATEX, Matla	b
RESEARCH	Random projection test for high-dimensional linear regression Supervised by Yuting Wei	Oct 2019–Mar 2020
	 Proposed a random-projection based F-test for the global null in high-dimensional linear model. Proved that the randomized procedure has a non-random signal strength and is minimax optimal among all possible tests when the model possesses a low intrinsic dimension. Accepted by <i>NeurIPS 2020</i>; check out our preprint <i>here</i>. 	
	Distribution of the sketched Lasso solution: a new tool for fixed-design Lasso	analysis Mar 2020–
	• Derived the distribution of the sample wise sketched Lasse solution using Gordon's min may theorem	
	• Derived the distribution of the sample-wise sketched Lasso solution using Gordon's min-max theorem, which leads to new findings about the fixed-design Lasso solution	
	 When sparsity/feature dimension is approximately constant, both problems remain open for years. 	
	Transfer learning and integration of large single-cell gene expression datasets	Mar–Sep 2020
	Supervised by Kathryn Roeder and Yuting Wei	1
	• Designed a transfer learning mechanism based on a shared low-dimensional factor space, which helps us	
	to integrate and transfer information between single-cell gene expression datasets.	
	 Improved clustering results significantly by integrating data from different technologies, labs and species. Submitted to <i>Genome Research</i>; check out our preprint <i>here</i>. Further theoretical analysis in progress. 	
	Modeling and imputation of single-cell gene expression datasets	2015-2017
	Supervised by Hao Ge and Hongyu Zhao	
	 Constructed a hierarchical Bayesian model to account for the variance components in single-cell data. Applied this model for dropout imputation and batch effect correction. Presented in <i>NeurIPS 2019 Workshop on Machine Learning in Computational Biology</i>. 	
SELECTED	Mation-Object-Background disentangled representation from video	Spring 2019
COURSE	Course project of 10-708 Probabilistic Graphical Models: see our final report <i>here</i>	Spring 2017
PROJECTS	• Based on the SOTA content-motion disentangled learning architecture for video prediction task, we pro-	
	posed a Motion-Object-Background disentanglement, obtaining better performances in certain scenarios.	
	Speaker recognition using deep neural network	Spring 2018
	Course project of 11-785 Introduction to Deep Learning; see our poster here.	
	• We designed and evaluated three different architechtures on a standard speech sifestion model: (2) attention based model and (3) adversarial autoencoders	dataset: (1) $CNN + clas-$
	Stochastic neighbor tonic model	Fall 2017
	Course project of 10-715 Advanced Introduction to Machine Learning; see presentation slides <i>here</i> .	
	• Inspired by <i>t</i> -SNE, we introduced a stochastic neighbor based loss in the LDA objective function, which can be interpreted as a regularized prior on topic distribution. The model is fitted with ADMM.	
Awards	Silver Medal, Chinese Mathematical Olympiad	2013
	5 · 4 Youth Scholarship, Peking University	2014, 2015
	Outstanding Graduates, Peking University	2017